Розділ: Комбінаторика, теорія ймовірностей, статистика
Тема: Перестановки, комбінації, розміщення. Комбінаторні правила суми та добутку
Кількість завдань: 31
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
ТЕМА: Алгебра і початки аналізу. Елементи комбінаторики, початки теорії ймовірностей та елементи математичної статистики.
Завдання скеровано на перевірку вміння розв’язувати задачі, використовуючи розміщення (без повторень), комбінаторні правила суми та добутку.
Кількість способів вибрати 2 теми з 10 запропонованих знаходимо за формулою розміщень:
Відповідь: 90.
Побажання та зауваження будь ласка пишіть на
ТЕМА: Алгебра і початки аналізу. Елементи комбінаторики, початки теорії ймовірностей та елементи математичної статистики.
Завдання скеровано на перевірку знання класичного означення ймовірності події, правила добутку ймовірностей.
У класі 26 дітей. Учительна навмання формує пари дітей. Імовірність того, що Дарина сидітеме за однією партою з дівчинкою: $$ P(A)=\frac{14}{25}=0,56 $$
Дівчат у класі, крім Дарини, чотирнадцять. Усього дітей у класі (без Дарини) – 25.
Відповідь: 0,56.
Побажання та зауваження будь ласка пишіть на
ТЕМА: Алгебра і початки аналізу. Елементи комбінаторики, початки теорії ймовірностей та елементи математичної статистики.
Завдання скеровано на перевірку знання означення перестановок, комбінаторних правил суми та добутку.
Послідовність розміщення 6 новин у стрічці:

Кількість розміщень політичних новин в стрічці \(2!\), а суспільних новин – \(3!\). Спортивна новина 1 та йде останньою.
За правилом добутку кількість розміщення цих 6 новин: $$ 2!\cdot 3!=1\cdot 2\cdot 1\cdot 2\cdot 3=12 $$
Відповідь: 12.
Побажання та зауваження будь ласка пишіть на
ТЕМА: Алгебра і початки аналізу. Елементи комбінаторики, початки теорії ймовірностей та елементи математичної статистики.
Завдання скеровано на перевірку вміння розв’язувати задачі, використовуючи розміщення.
Кількість способів вибрати 3 смайлики з 15 знаходимо за формулою розміщень:
$$ A^k_n=\frac{n!}{(n-k)!} $$ Вибрані смайлики можуть розміщуватися по-різному.
Відповідь: 2730.
Побажання та зауваження будь ласка пишіть на