Розділ: Планіметрія
Тема: Прямокутні трикутники
Кількість завдань: 56
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
Побажання та зауваження будь ласка пишіть на
ТЕМА: Геометрія. Планіметрія. Трикутники.
Завдання скеровано на перевірку знання властивостей трикутника, вміння розв’язувати задачі практичного змісту.
Побудуємо математичну модель задачі:

$$ DB=6\ \text{м},\ AM=3,2\ \text{м}\ KM=AK-AM=6-3,2=2,8\ \text{м}. $$
$$ \triangle KMN (\angle M=90^\circ) \ \ KN=2KM=2,8\cdot 2=5,6\ \text{м}. $$
Катет \(KM\) протилеглий куту \(30^\circ\) дорівнює половині гіпотенузи \(KN\). $$ 5,5 \leq 5,6\lt 6 $$
Відповідь: Г.
Побажання та зауваження будь ласка пишіть на
ТЕМА: Геометрія. Планіметрія. Трикутники. Чотирикутники.
Завдання скеровано на перевірку знання властивостей трикутників та їх основних властивостей.

\(P_{ABMK}=24\ \text{см}\ \ KC=17\ \text{см}.\)
1.
2. \(2OM=MK=8\ \text{см}, \triangle MKC\ (\angle M=90^\circ)\) - за теоремою Піфагора
Відповідь: 1. 4. 2. 152.
Побажання та зауваження будь ласка пишіть на
ТЕМА: Геометрія. Планіметрія. Трикутники.
Завдання перевіряє вміння застосовувати означення та властивості різних видів трикутників до розв'язування планіметричних задач.

1. За теоремою Піфагора: \begin{gather*} AB^2=AC^2+BC^2\\[7pt] BC^2=20^2-12^2=400-144=256.\\[7pt] BC=16\ \text{см}. \end{gather*} Отже, правильна відповідь – Д.
2. Радіус кола, описаного навколо прямокутного трикутника, дорівнює половині гіпотенузи. Отже, \(R=\frac 12 AB=10\ \text{см}.\) Отже, правильна відповідь – B.
3. \(CH\perp AB\)
Висоту \(CH\) можна знайти, прирівнявши площу трикутника
\begin{gather*} S=\frac 12 a\cdot b\ \text{та}\ S=\frac 12 ch_c, \end{gather*} де \(a,\ b\) – катети, \(c\) – гіпотенуза.
Або знайти висоту за допомогою метричних співвідношень у прямокутному трикутнику:
\begin{gather*} AC^2=AH\cdot AB,\ \ 144=AH\cdot 20,\\[7pt] AH=144:20=7,2\ (\text{см}) \end{gather*}\(\Delta ACH\ (\angle H=90^\circ)\) за теоремою Піфагора:
Отже, правильна відповідь – Б.
Відповідь: 1Д, 2В, 3Б.
Побажання та зауваження будь ласка пишіть на